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A differential pursuit-evasion game is considered with three pursuers and one evader. It is assumed that all objects (players) 
have simple motions and that the game takes place in a plane. The control vectors satisfy geometrical constraints and the evader 
has a superiority in control resources. The game time is fixed. The value functional is the distance between the evader and the 
nearest pursuer at the end of the game. The problem of determining the value function of the game for any possible position is 
solved. 

Three possible cases for the relative arrangement of the players at an arbitrary time are studied: "one-after-one", "two-after- 
one", "three-after-one-in-the-middle" and "three-after-one". For each of the relative arrangements of the players a guaranteed 
result function is constructed. In the first three cases the function is expressed analytically. In the fourth case a piecewise- 
programmed construction is presented with one switchover, on the basis of which the value of the function is determined 
numerically. The guaranteed result function is shown to be identical with the game value function. When the initial pursuer 
positions are fixed in an arbitrary manner there are four game domains depending on their relative positions. The boundary 
between the "three-after-one-in-the-middle" domain and the "three-after-one" domain is found numerically, and the remaining 
boundaries are interior Nicomedean conchoids, lines and circles. Programs are written that construct singular manifolds and the 
value function level lines. 

The approach presented in [1-5] is extended. The problem is formalized as in [6, 7] and similar problems 
have been previously considered in [8-12]. 

1. T H E  E Q U A T I O N S  O F  M O T I O N  A N D  T H E  P A Y O F F  F U N C T I O N A L .  
S T A T E M E N T  O F  T H E  P R O B L E M  

Over the fixed time interval [to, ~] we will consider the approach problem for three pursuers PiO,1 (i), 
y2 (i)) (i = 1, 2, 3) of the same type and a single vader E(zl, z2) in a plane. 

The dynamics of the pursuers and evader is given by the equations 

y[i) :--U[ i)' "2"(i) --,_ "2(i) ""lrt' (i)X2, + (u l i ) )2 )  ~ <~ g, i =  1,2,3 (1 .1 )  

- , ' 2 I,,2. 

zi ":'°t, -~2 =~2 ~'7 +a~2) '2 ~<v, v>~t (1.2) 

where u (i), a~ are two-dimensional control vectors. 
The payoff functional (PF) 6 is the distance between the evader and the pursuer that is nearest to 

it at the time O 

= min ((z, (0) - y[i)(o))2 + (z2 ('~) - Y~2 i) (0)) 2)~ 
i=1,2.3 

(1.3) 

The problem is formalized as in [6, 7]. 
The pursuers try to minimize, and the evader to maximize the PE It is required to construct an 

algorithm for calculating the value function of the game (1.1)-(1.3) for any possible initial position of 
the game. 
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2. TYPICAL RELATIVE POSITIONS 

We can identify four typical basic cases for the relative position (Fig. 1): the game of"one-after-one" 
in which the only significant interaction is between one of the pursuers and the evader P1 and Eft the 
game of "two-after-one" where there is significant interaction between two pursuers and the evader 
(Pb P2 and E2); the game of "three-after-the-one-in-the-middle" and the game of "three-after-one" in 
which one must take into account the interaction of all the players (P1, P2, P3, E0 and P1, P2, P3, E3, 
respectively). 

3. FEATURES OF THE PROBLEM. AN ALGORITHM FOR 
DETERMINING THE VALUE OF THE GUARANTEED RESULT 

FUNCTION IN THE MOST CHARACTERISTIC CASE 

We consider the game (1.1)-(1.3) starting at time t = to from the typical initial position shown in Fig. 
2. We place the origin of Cartesian coordinates at the point O(t) = (o1(0, o2(t)) equidistant from P1, 
P2 and P3. We direct the q2 axis along the perpendicular bisector of the line section [P3, PI], and the ql 
axis perpendicular to the q2 axis. Player E is in the triangle formed by P1, P2 and P3. 

The domains of accessibility Gi(t) = Gi(O, t, y(i), (t)) of the Pi are the circles of radius r(t) = g(O - 
t) with centres at (yl(i)(t), y2(i)(t)), and the domain of accessibility G(t) = G(~, t, z(t)) of E is the circle 
of radius g(t) = v(~, - t), with centre at (Zl(t), z2(t)). 

Suppose that the domain of accessibility of the evader E at time t is intersected by.the perpendicular 
bisectors of the line sections P3P1, PIP 2 and PEP3 at the points Ai( t  ) = (al(O(t), a20)(t)) (i = 1, 2, 3), 
respectively. The pointsAi(t) (i = 1, 2, 3) and O(t) are called sighting points. 

We denote Pi, E, Ai, 0 at time to by Pio, Eo, Aio, 0o, at time t. by Pi o, E., Ai., 0. ,  at time t.. by Pi,., 
E°, ,  A i , ,  , O.. and at time x by Pix, E~, A~, O~ (i = 1, 2, 3). 

The pursuers Pi (i -- 1, 2, 3) and evader E at times t = to are at positions Pio and E0. 
We shall assume that at time t = to (Fig. 2) the inequality 

d(Plo, AIo) > d(Plo, 0o) (3.1) 

is satisfied where d(A, B) is the Euclidean distance between points A and B. 
To investigate the features of problem (1.1)-(1.3) we investigate the following special case. Suppose 

that throughout the game time interval [to, O] player E chooses the extremal control programme 

q 2  

p Al,=Al." 

F 2° \P 0 
Fig. 1. Fig. 2. 
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x)(t) = (vcos~*, vsin[$*) 

[$* = g - arctgt(a~ (t 0) - z2 (t0)) / (a] (t 0) - zl (t0))] 
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directed intoAa0 and reports this to the pursuers. (The angles are measured from the positive direction 
of the ql axis.) 

In response to this players P1 and / '2  act as follows. Player P1 also chooses an extremal control 
programme 

u(t)  = (Ixeostx*, ~tsinot*) 

or* = n - arctg[(a~ (t o) - y[I) (to)) / (a I (to) - y~l)(to))] 

directed atA10 throughout the interval [to, O], player P2 is controlled arbitrarily subject to the restrictions 
(1.1), and/ '3  move,'; symmetrically with respect to P1 relative to the q2 axis. (It can be shown that the 
behaviour of P2 does not affect the value of the PF when the controls of E and P1,/'3 are as given.) 
AS a result, at some time t = t., where to < t., < O, the players are at positions Pi" (i = 1, 2, 3) and E° 
(Fig. 2), charactem,ed by the equality 

d( Pl , ,Aio)  = d(  Pl , ,O, )  (3.2) 

Suppose that the players E, P1 and P3 continue their extremal motion towardsA10 when t > t., and 
that player P2 moves arbitrarily as before. Then when t > t. the inequality 

d(Pl ( t ) ,A to)  < d ( ~ ( t ) , O ( t ) )  (3.3) 

is satisfied, and the ,~fference p(t) = d(Pl(t), O(t)) - d(Pl ( t ) ,A lo  ) will increase monotonically as t increas- 
es. Inequality (3.3) and the monotonic growth of p(t) hold true fight up to time t = t.. (Fig. 2) when 
the inequality 

O,, = A2,, (3.4) 

is satisfied. 
At time t = t..  a situation arises when player E can ensure himself a larger value of the PF by changing 

the previous control to a programmed extremal control in the semi-interval [t.., a~] directed at the point 
O.,. As a result, E guarantees himself the value 

o I (0) = d(Pl . . ,  alo) - r ( t . . )  (3.5) 

satisfying the inequality 

O I (0)  > O(0) ffi d(I]1.,, AIo) - r ( t . , )  (3.6) 

following from (3.3) and (3.4). 
It can be shown that for any control u2(t) (to <- t ~ t , . )  satisfying restriction (1.1) the inequality 

0 (0 )  = d ( P 2 . . , O . . ) - r ( t , .  ) ~ 01(0 ) (3.7) 

is satisfied. 
On the basis of this discussion of the developing situation in this particular case of the game (1.1)-(1.3) 

one arrives at the following conclusions. 
If player E applies the extremal control directed at the point A1, then it is inadvisable for players Pa, 

P3 to use the extremal sighting at the pointA10 (unlike the case of "two-against-one" [8]). 
We now fix any of  the game positions that appear in the above case at some time t where t. < t 

t... We shall take this to be the initial position for some new game (1.1)-(1.3). As before, suppose tl~at 
in this new game, player E uses an extremal control programme a~(t) directed at the pointAw. It can 
be shown that for any admissible controls for players P1, P2 and/ '3,  the value of the PF o (0 )  in the 
interval t. ~< t ~< t.. will increase (noting that here the values of t. and t.. will in general differ from 
their previous values). 
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The fact that it is impossible to restrain the increase in the value of the PF in certain positions of the 
game is one singular feature of the problem under consideration. The problem then arises: how does 
one construct a value function for such game positions? The answer to this question is the main content 
of this paper. 

An algorithm for determining the values of the guaranteed result function (GRF) for the game 
positions considered above is based on the following considerations. Suppose that the evader E moves 
extremally towards the pointA1 during the interval [toO]. Using the arguments given above we assume 
that pursuer P1 chooses an extremal control ul ( t )  (to <~ t <~ x) directed at some angle ~x to the ql axis, 
pursuer P3 chooses a control u2(t) directed at an angle 7t - tx to ql, and pursuer P2 moves extremally 
towards some point O(x)  = A2(x) given by the equations 

d(P20, Or ) - I.t~ x d(Pl x, At0 ) = d(P3 x, At0) (3.8) 
(see Fig. 3). 

The values of x and tx are given by the following conditions. 
1. P1, P3 and E move extremally, and at time t = x should be at positions Plx, Pat and Ex whose ordinates 

coincide. 
2. P2, moving extremally towards some point A2x, should at time t = x be at position P2(2x) for which 

holds. 
3. The equation 

d(,°20, A2, ) - p.'C = d(  P2x, A2x ) = d(  P I x, AIO ) = d(  P3x, AIO ) (3.9) 

O,~ = A~.~ (3.10) 

must hold. 
Using conditions (3.8)-(3.10) we write out below the equations that determine the specific values of 

a and x(a) for any initial position. Looking ahead, it is necessary, unfortunately, to note that the 
calculation of a and x(a) leads to the need to solve transcendental equations of high degree and that 
this has to be done numerically. 

As a result the required GRF denoted by ~ is found from the expressions 

A tq2 

L ,, p. 
Fig. 3. 
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T = d(Plt, AI0)- r(x) = d(Pl~, A2t ) -  ,'(t) = d(P3t, A,0)- r(t)  = 

= d(P3x ,A2x  ) - r ( x )  = d (P2x ,A2x  ) - r ( z )  (3.11) 

The function T is ~-stable and this follows directly from the definition of ~-stability by virtue of the 
linearity of system (1.1)-(1.2) [6]. GRFs corresponding to extremal motion orE towards the pointsA20 
andA30 are defined similarly. 

4. GRF C O N S T R U C T I O N  A L G O R I T H M  

For fixed positions Pj (i = 1, 2, 3) the plane R 2 of initial positions of E at time t is, according to the 
typical cases of Section 2, the union of domains D1, D2, Do and D3, where D1 is the domain of the "one- 
after-one" game, 1)2 is the domain of the "two-after-one" game, Do is the domain of the "three-after- 
one-in-the-middle" game and D 3 is the domain of the "three-after-one" game. 

These domains are shown in Fig. 4 for different values of IX and v for fixed 0 = 1. In Fig. 4(a) Ix = 
12, v = 24, in Fig. 4(b) Ix = 10, v = 20 and in Fig. 4(c) IX = 6, v = 12. It should be said that in Fig. 4(b) 
the singular lines pass through the point of intersection of the boundaries of two neighbouring D 3 
domains, and in Fig. 4(a) they connect the points Pi (i = 1, 2, 3) with some point in the interior of the 
triangle P1P2P3 whiich is found numerically. The boundaries of the domain D 3 in Fig. 4(b) are also found 
numerically. 

We note an obvious property of the domains Di: Di  f') Dj ~ ~, (i, j ---- O, 1, 2, 3, i ~ j) if Di ~ ~ and 

We determine the GRP in all three typical cases of the game (1.1)--(1.3). 
For the domain.,; Do, D1 and D2 the GRF can be written in the general form 

T(t,x)= max min min d(z,y), i=1,2,3 (4.1) 
z~G(t) i Y~Gi(t) 

where x is the position of the game. 
Note that the maximum with respect to z is reached at an internal point of the domain of accessibility 

of player E for the domain Do, and at the boundary for domains D1 and D2. 
Expression (4.1) gives the general form of the expression for the GRF at each of the domains of the 

game (1.1)-(1.3). 
A value function for the domains D1 and D2 was found in [1, 6]. 
This paper concentrates on the "three-after-one" case considered below. 
For each value of the indexj = 1, 2, 3 we introduce a distinct system of coordinates q/lqJ2. 
Whenj  = 1 the ql and q21 axes coincide with those defined in Section 3, whenj = 2, 3 the coordinate 

1 1 axes qdlqJ2 are obtained from the qlq2 axes by a rotation about the point O, after which the qJ2 axis 
coincides with the perpendicular bisectors of the line sections [P1P2] and [P2P3], respectively. 

We will determine the algorithm for constructing the GRF.s ~(t, x) (j = 1, 2, 3) corresponding to 
I J extremal motion E(t) to Aj(t) in the system of coordinates q lq 2. 

The extremal motion E(t) andAj(t) is given by the angle B~ (j = 1, 2, 3) 

(a) (b) (c) 

Fig. 4. 
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~ = 7t - arctg[(aJ (t0) - z2(/)) / (aJl(t) - zt (t))] 

The position of E(x) at each instant x > t is governed by the expression 

E(X) = (zl (x), z2 (x)) = (zl (t) + w cos([l~ ), z2 (t) + w s i n ( ~ ) )  

Pj(t) moves extremally towards Aj(t) (j = 1, 2, 3) at an angle 

IW Otj = ~ - arctg[(a i (t) - y(2 j) (t)) / (a i (t) - y}J)(t))] 

to the abscissa axis q J1. 
We determine the position of Pj moving at an arbitrary angle a to q/1 at time x > t to be 

Pi ( ~( ot ) ) = ( y[J) ('c( ot ) ), y (2 j) ('t(a))) = (y}J ) ( t ) + B~ cos a, 

y(2J)(t)+p.xsina), j =1,2,3 

(4.2) 

(4.3) 

(4.4) 

(4.6) 

We determine the function.~(~) as follows: 

f j  (xj (a j ) )  = yC2J)(xj (a j ) )  - [a[ j) (t) + 0 2 ('Cj ((Xj))] / 2 

o J2 (O~j).= y(2 k) (t) + [(Rj ('cj (o~j)) + kt'C(O~j ))2 _ (y~k)(t))2 ]~2 

(4.7) 

(4.8) 

where o2('cj(lxj) ) is the ordinate of the point O(xj(~)), k = 2, 1, 3 for i = 1, 2, 3 and Rj(xj(~)) 
is equal to either the distance between Pj and Aj ifyl(J) ~> Zl, or between E and Aj if yl tj) < zl, at time 

Id(Pj('Cj(O~j)), Aj(t)), if y~J)(xj(O~j)) >>" Zl('gj(O{j)) 
RJ('rJ(O~J))fLd(E(xj(Otj)), Aj(t)), if y }J ) (x j (a j ) )<z l ( x j (a j ) )  (4.9) 

Using (4.6)-(4.9) one can calculate the angle ~ depending on the sign of the function.~(xj(ot~)). If 
the sign is negative we take the value of aj to be equal to the extremal angle txj*, otherwise we take it 
to be the root of the equation ~(a)  = 0 which is little different from the extremal value 

Ia j ,  when f j ( x j ( a j ) ) - .  0 
a J = [ a : / ) ( a ) = 0 ,  I a ; - a l  ~ m i n ,  when / ) ( x j ( a ; ) ) > 0  (4.10) 

Thus, using (4.2)-(4.10) we determine the GRFs ~ (j = 1, 2, 3) to be 

7j = Rj (x(a j ) )  - r('~j (txj)) 

and as a result we represent the GRF 7(t, x) in the form 

7(t, x) -- max 7j (t, x) (4.12) 
J 

Expressions (4.12) and (4.1) are identical when the inequality yl q) (xj(o~)) >>-z(xj(o~)) is satisfied. We 
note that in the interval It, x] we only have the "three-after-one" case, and at time x the "three-after-one" 
case, and at time x the "three-after-one" case may be identical with any of the remaining game cases. 

Thus the GRF T(t, x) is determined as follows: 

7 ( t , x )=max  max min min d(z,y), j--1,2,3, i=1,2,3 (4.13) 
j zEG('~j) i y~Gi(Tj) 

(4.11) 

xj (a j )  = (yC2J) (t) - z2 (t)) I (v sin ~ - }.t sin a j )  

In order to satisfy conditions (3.8)--(3.10) and determine the GRFs ~ (j = 1, 2, 3) from (3.11), the 
following algorithm is presented for calculating the values of the angle oj and the time when the ordinates 
of P, and E xj coincide. 

The angle aj fo r j  = 1, 2, 3 and the corresponding xj are related by the equation 

(4.5) 
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where xj = x;(t, x). F~pression (4.13) enables us to determine all the boundaries of the domains Dj 
(j = 0, 1, 2, ~). 

The curve separating the domains O 1 and D2 is given by the internal Nicomedean conchoids of radii 
R(t) with centres at I~ (j = 1, 2), and a circle of radius R(t) with centre at O separates domains Do, D1 
and Do, D2, straight lines joining the positions of the pursuers separate D 2 from D3, and the curve 
separating domains/93 and Do is found numerically from the condition that the equality 

% = t x  o, j =  1 , 2 , 3  (4.14) 

is satisfied i fE  lies on the boundary, with c 9 being determined from (4.10) and t~o being ~ e  angle between 
the ray P p  and the abscissa. 

Singular manifold,~ of  dimensions 1 and 0 are found numerically from the conditions 

respectively. 

Yi( t )=Tj ( t ) ,  i ~  j, i , j=1 ,2 ,3 ;  Tl ( t )=T2( t )=T3( t )  (4.15) 

5. T H E  u - S T A B I L I T Y  P R O P E R T Y  OF T H E  G R F  

The u-stability property of  the G R F  in domains D1 and D2 was proved in [1, 6]. It remains to verify 
u-stability in domains Do and D3. 

Assertion 1 (u-stability in Do). Suppose that when t = to, x = x0 we have T(t0, x0) = To. Then for any 
pg.sition E.. e .D..0 and any constant control ~ = (~1, ~2) = const in the interval [to, t] there are controls 
u O) = (ul 0), u2 0)) such that the inequality T(t, x(t)) = T1 ~< To holds. 

It can be shown that with such controls for the pursuers Pi, i = 1, 2, 3 there are controls directed 
towards O(to) which have the form 

u(•) y~O(to))/ O(to)), i=1,2,3,  =1,2 j = ~t(oj (t o ) - d(Pi (to), J 

Remark. If a time t* ~ [t 0, t] exists such that E(t)* ~ Di, i = 1, 2, then the chosen controls can be 
replaced in the inter~al [t*, t] by controls corresponding to the cases D i (i = 1, 2). 

Assertion 2 (u-stability in D3, the regular case). Suppose that when t ffi to, x = x o the value of  the 
G R F  (4.12) is given by the equality T(t0, x0) = )'1(to, x0) = To. Then for any position E ¢ D3, (E ~ S) 
and any constant control ~ = (~1, a~2) in the interval [to, t] one can find controls u (i) = (ul (i), u2 (i)) 
such that the value of the G R F  at time t satisfies the inequality T(t, x(t)) = Y1 < Y0. 

We choose the controls 

u~l)=lX(coj-y~l~(to))/d(Pl(to),~),  i=1,2,  j = l , 2  

~,'2 ~ (co I , co2) = BRI (A1 (t))  :a B~t~l )PI (t0)) # ~, d(fl, O('q )) =* rain 

u) 3) ffi Ix(oj('cj)-y~3)(to))/ d (~ t to) ,  O('cl)), j = 1,2 

Here BR(A ) is a circle of radius R with centre atA, and the point fl  = (ah, co2) is given by 

= ~R(/)(AI (t)) t'~ BWt (~1 (tO)) ri~ ¢~' d(~'~, O(t  O ) ~ rain 

One can verify that these controls along the interval [to, t] guarantee that the inequality 7(t, x(t)) < 
Y0 is satisfied. Controls for the case when T(to, Xo) = Tj(to, Xo) = To, (j = 2, 3) are chosen similarly. 

Assertion 3 (u-stability in D3, the singular case). Suppose that when t = to, x = x 0 the equality T(to, x0) 
= Tl(t0,Xo) = Ta(t0,x0) > T2(t0,x0) is satisfied and also that tZl = a~, ix3 = tz~ (see (4.10)). The value of 
the G R F  is given by ~(t0, Xo) = To. Then for any position E(x) ~ D3(x ~ S) and arbitrary 
control (ul, v2) = const one can find controls u (i) = (ul (i), u2 (0) such that at time t the inequality 
T(t, x(t)) < To is satisfied. 
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Suppose that G(t) intersects the lineAl(to)A3(to) at pointsal(t) andA3(t ). We denote the perpendicular 
bisector of the line section A1(t)Aa(t) by.L and the. intersection if L with the circle B~t(t_~o) (Pl(to)) by I. 

The assertion demonstrates the followmg choice of controls: player Pi (i = 1, 2, 3) chooses the control 
u) i) directed towards the point ~i = (to1 (i), H i)) 

(i) = la(o3~i) _ y~i)(to) ) I d ( P i ( t o ) , ~ i ) ,  j = 1,2 uj 

J'~: ~ e I ,  I~:~ 
~'~1 = ~ Ai(t):d(Ai(t)Pl(to)) > d(Aj(t)Pl(to)) , i , j  = 1,2, 1 = 

After the point ~r~ 1 w e  fmd Pl(t) and the value V = d(Pl(t), Al(t)), while the points L') 2 and f~3, each 
of which belongs to the intersection of two circles, are situated maximally dose to one another 

~"~2 E {nlaCt_to)(e2(to))('~ Bv(Al (t))} 

f~3 ~ { B~t(t-,,,) (P3 (to)) n B v (A 3 (t))} 

d(~")2,~')3) =:~ min 

One can similarly prove the assertion with the assumption that the maximum of the GRF (4.12) is 
reached on Y2 and Y3 or on Y1 and T2. The remark for Assertion 1 is also true for Assertions 2 and 3. 

According to the data of the numerical investigation the singular lines are straight lines. 
In conclusion, we will consider the case when the singular manifolds are given by the second relation 

of (4.10) where ~ ;~ tx* ( = 1, 2, 3). 
Because the transcendental equation~(tx) = 0,j = 1, 2, 3 is of greater than fourth degree in sin (ct) 

the calculation of the GRF is extremely difficulty without using a computer. 
We proceed as follows. Let sij be the nodes of an orthogonal grid defend in the domain D 3. We denote 

the rectangle formed by the nodes $i-l,j-1, $i-l,j, 8ij-1, SijJ by S#. It is obvious that for any E ~ S one can 
find a Sij such that E ~ Sij. 

As above, the evader chooses the control ~ = const in the interval [to, t]. 

Proposition. If the u-stability property holds at the nodes defining Sij, then it also holds at any position 
s,s. 

The proof of u-stability at the nodes sij was carried out numerically using a program implementing 
the GRF construction algorithm (4.2)-(4.13), minimizing the GRF and generating the position x(t) and 

tt) the value of the GRF for the computed u " (i = 1, 2, 3) for an arbitrary control of the evader; here the 
subdivision step was chosen depending on the desired accuracy. 

It was verified numerically that the u-stability property holds at the nodes of S# to any required degree 
of accuracy. 

Figure 5 shows the dependence of the GRF ~t, x) on different controls u for the position determined 
by the second of conditions (4.10). It is clear that T(t,x) <~ T(to, Xo) with equality only holding for extremal 
controls u determined from (4.3). 

Figure 6 shows the level lines of the game value function in all the D i (i = 0, 1, 2, 3) for fixed positions 
of the pursuers P1(100/31/2, 0),/'2(-100/31/2, 0),/3(0, -100) when O = 1. In Fig. 6(a) ~t = 12, v = 24, in 

F (1) = Y(a) 

(a) 

Fig. 5. 

y~)=Tfo) 

\ f -ra, oj 
V ~'¢,r 

(b) 
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(a) (b) (c) 

Fig. 6. 

Fig. 6(b) p. = 10, v =: 20 and in Fig. 6(c) ~t = 6, v = 12. The level lines in Fig. 6 correspond to domains 
of the initial positions of the evader in Fig. 4. 
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